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Abstract

This paper extends the results of Penfield and Rubinstein on signal delay in
RC tree networks. Both estimates and bounds are derived for the step response
of Ileakyw RC trees and meshes, a class of networks that is appropriate for

* modelling interconnect in digital bipolar circuits. This paper is intended to
serve as a tutorial as well as a research report. Therefore existing work is

explained in some detail along with the derivation of new results.
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I. Introduction 1

Simple closed-form bounds for signal propagation delay in linear

RC tree models for interconnect were derived in [1]. The theory has

since been extended to include RC mesh models as well [2]. The goal of

this report is to further extend the theory to allow for RC networks with

grounded resistors (i.e., "leaky" RC trees and meshes -- see section II.,A

for a precise definition of these terms). Both delay estimates and delay

bounds are developed.

The practical motivation behind allowing resistive paths to ground

in RC mesh circuits is an attempt to more accurately model interconnect

on bipolar chips. The base of a bipolar transistor loading the interconnect

offers a (nonlinear) resistive path to ground. A corresponding gate

electrode of an MOS transistor would not offer such a resistive path to

ground, and the original work of Penfield et. al. relied upon the absence

of such paths. f.

IAI
.21 e(t)---

Fig. 1: Lumped linear RC tree model for MOS logic with fanout

. . . . . . . . . . . . . . .

°. . .. . . . . . . . . . . . . .
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Fig. 2: Leaky RC tree model for bipolar logic with fanout -""

Consider the RC tree in Fig. 1. The voltage source e(t) represents l:

the output of some logic gate. The output of this gate fans out through [
the interconnect to the inputs of two other logic gates at nodes C4 and ! 'I

G -Since nodes (@ and @ represent the gate terminals of MOS .

transistors, there is no need for a resistive path to ground in the model. [i"

The analogous situation in bipolar logic is illustrated in Fig. 2.
Here nodes G and (D represent the base terminals of bipolar transistorsl-

,S..

so we need a resistive path to ground in the model. The resulting circuit

• 
.-

is not an RC mesh, but would be one except for the resistive paths to ground

This is the type of network discussed in this report. The organization
of this report can be seen in the table of contents.ei s

tranistos, tereis ~o ned fr a esisivepathto goun in he mdel
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II. Classes of Networks Considered
.-... ,.?d

A lumped linear RC mesh is any network consisting of 2-terminal

linear resistors and capacitors driven by independent sources, such

that one side of every capacitor and every source is grounded, no

resistor is grounded, and between any two nodes other than ground there

exists a path consisting entirely of resistors. An RC mesh is called

an RC tree if it does not contain a closed path of resistors.

However, in this paper we shall consider more general types of

circuits: leaky RC meshes and trees. A leaky RC mesh is any network

meeting all of the requirements of an RC mesh given above, except for

the restriction that there be no grounded resistors. So for every leaky

RC mesh, there is an underlying RC mesh which is obtained by open-

circuiting all of the grounded resistors in the original leaky RC mesh.

4. A network is a leaky RC tree if it is a leaky RC mesh whose underlying

RC mesh is an RC tree (i.e., there are no resistor loops in the underlying

RC mesh).

V-..

III. Network Matrices, -

In this section, we define certain network matrices to be used

later in the report. Well-known facts about these matrices will be

presented. We shall motivate these definitions by the example circuit

in Fig. 3. Note that this example circuit would be an RC mesh without

the grounded resistor R6.

" ...-.- - -- - -. - • : .-. .. : .,. :. i -, ;" _:6 ':
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2 3

4 5

fIL 7-

Fig. 3: Lumped linear RC network

The ground node and the node connected to the 
independent source are

not numbered. The remaining nodes are numbered in any order from®

to® ,N where N is the total number of capacitors (in Fig. 3, N=4).

a.) The resistance matrix R:

1 5,.--.

datum!R 2 R-

A A.

eLi + F-w+R

Fig. 4: The resistor subnetwork R extracted from the circuit '

in Fig. 3 (driven with current sources)

7"I



We isolate the resistor subnetwork R containing all the resistors

and assign reference directions to the capacitor currents il, ...
as shown in Fig. 4 (note that positive current is defined to be flowing

out of the capacitor and into the resistor subnetwork). Let the node

connected to the independent source serve as the datum node of R. Define

the matrix R as follows:

With the datum grounded, the node voltages with respect to ground

are given in terms of the capacitor currents by the resistance matrix R

as shown below: m.

Vl(t )  R R ... R i(t)

1t 11 12 1N1ii
v(t) R2 1 R22 .R i2(t)22 2 2N 2

N R R .. R i tW
-Nl N2 NN N

We can introduce vector notation to write (1) in a more compact form.

T
Let v denote the column vector of node voltages (vI , v 2... v ) Let

T
i denote the column vector of capacitor currents (iI , i2 ... iN) Then

(1) becomes:

v(t) - R i(t) (2)

So with the datum grounded, the numerical value of any matrix entry R ij,
I--

in ohms, is equal to the potential in volts we would observe at node Q if

a 1-amp current were injected into node 0 and all external nodes of R

other than Q and the datum were open-circuited.

%I
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II
In the special case of an RC tree the matrix entries can be read

off by inspection, since in that case R.. is simply the sum of the resistances *.-'

along the route obtained by intersecting the path from node 0 to datum

with the path from node 0 to datum. So, the topological definition

of R.. for an RC tree given in (1] is consistent with the more general

interpretation of Rij as an element of the resistance matrix R describing

the resistor subnetwork R.

From circuit theory, the resistance matrix R has certain well-known

properties independent of the particular resistor subnetwork being

described by R:

(i) R is symmetric (i.e., R.. R .. for all i,j): This is a

consequence of R being a "reciprocal" network. [3; Chapter 16]

(ii) R is positive-definite (assuming all the resistors in R are

positive): This is true because the power dissipated in R,

given by the quadratic form i TR i is positive for any nonzero

choice of currents i.

These properties of R are quite standard and play only a minor role in

the theory. But R possesses more structure than synmetry and positive-

definiteness, and this additional structure, described in Section VI and

proved in Appendix A, is the foundation for the theory developed in this

report.



L7 .

b.) The conductance matrix G:

III

atum R 2 Ri I2 ii 4! R

13
R RR

A4 .

Fig. 5: The resistor subnetwork R extracted from the circuit i.

-Ao

in Fig. 3 (driven with voltage sources)

Again, we isolate the resistor subnetwork R (Fig. 5). With the

datum grounded, we now express the capacitor currents in terms of the

node voltages by the conductance matrix G as shown below:

G G .. G v~t

i()11 12 iN

i 2 (t) G G ... G v(t)2 21 22 2N v 2 (t) (3)

i(t) G G ... G v(t)
N LNl N2 NN N

or, using the vector shorthand:

itt) = G v(t) (4)

So with the datum grounded, the numerical value of any matrix entry Gi.,
|j.

in -nos, is equal to the current in amps we would observe flowing into

. .



node (9 if a 1-volt source were applied to node and all external nodes

of R other than were grounded.

If R is the resistance matrix for the same resistor subnetwork

described by G, then G R. Like R, G is also positive-definite

symmetric (for similar reasons as R), and G possesses additional structure

described in Appendix A which is crucial to the results in Section VI.

c.) The capacitance matrix C:

This matrix is not as central to the theory as either the R or

the G matrix. It is simply notational shorthand for writing down the

capacitors in the RC network under consideration. We define

C =diagC 1 , C2 .... CN}. So C is a "diagonal" matrix, (i.e., has off-

diagonal elements equal to zero), and the diagonal elements are equal

to the capacitor values consistent with the assigned node numbers.

One simple property to note about C is that its inverse, C , is

also diagonal: C 1  diag-C - - (Of course, C

doesn't exist in the degenerate case where some individual capacitors

are equal to zero.)

IV. Network Differential Equations in Canonical Form

In order to write down the network differential equations, we must

first consider what happens when the datum, e(t), is not grounded. In

the previous section we wrote the node voltages in terms of the capacitor

currents when the datum was grounded:

".

. . .. . . . . .. . . .



v~t) =R i(t) ;(datumn e~t) =0) ()

When e(t) is not zero, then by superposition we can write:

v(t) = R i(t) + xe(t) (6),

T
where x =(x ,0 x2 .. xN is a column vector of dimensionless numbers

- 1

(each x. satisfying the inequality: 0 < .C 1). Referring back to Fig. 4,

1R

each x. is numerically equal to the potential (in volts) produced at node

Sdue solely to a 1-volt source at the datum, while open-circuiting all

of the external current Sources.

Example: In Fig. 3, if R 6 (open-circuit), the circuit is an RC

T
mesh and x (111)

Example: In Fig. 3, if R 6 is some finite resistance, x requires some

computation. The result is:

R + (R +R (RR
6 2 3 R4-- 5)

xl R (R +R

x 6~ R +R +R+R
2  2 3 4 5

x3 R I+R 6+(R 2+R 3)I (R 4+R 5
R 5CR 2+R3

Lx4  6 R +R +R +R5

The general cnputaticaal problem of calculating x is discussed in Section

Vill.

S. .

, , ..
computatio..................
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To begin the formulation of the network differential equations, .

we start by rewriting equation (6),

x e(t) - v(t)= -R i(t) (7).

The constitutive relations for the capacitors can be neatly written as:

i(t) -C c (t) ()

where the minus sign arises from our sign convention for capacitor currents.

Substituting (3) into (7) we have,

Sx e(t) -v(t) = R C) (t) (9).

The system of equations in (9) is the canonical form for leaky RC

meshes. The equations in (9) are also the most general: valid for all

time and for any possible e(t). At this point, it is worthwhile specializing

the system in (9) somewhat by considering only a certain form for e(t).

Since the voltage e(t) models the output of a logic gate undergoing

a logic transition, typically e(t) reaches and remains at its final value,

e(-), for some time interval t>T.

.

4. .

* *. *~~~~~~~~~~~~~. . ~ ~ ~ ~ ~ ......................................
.p. ... ....



Example: e (t)

3

T= 2

Example: q(t) "unit step at the origin"

e (t)

0

final value e(~
T 0

For an e~t) of this form, we can replace e(t) by e(-) for t > T.

So (9) becomes:

xe(-) -v(t) = RC]" (t) ,(10) E

valid for a "saturating" e~t) for t > T.

Now we can identify xe(-) as the final equilibrium voltage distribution.

a . aMM
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.. . . . .. . . . . . ? -. . . .

At equilibrium v(t) = 0, so (10) becomes:

xe(®)- V = [RC]O = 0 => V = xe() (11)

eq - -eq -

Finally, since estimates for and bounds on the step response will be

derived later in this report, the canonical equations for a step input

will be given. Using (10) and (11),

Network Differential Equations for a Step Input:

v -v(t) [RC],?(t) ; t>0
eq -- (12)

V. Delay Estimation

In this section, a good first-order estimate of the delay through

a leaky RC mesh is developed. This delay estimate is called the "Elmore

Delay" in the literature (4], also [1], [5-7]. We will denote it here by

"TD. By convention, we call the output node of interest "node 0 *"

So the subscript on TD. simply indicates that the delay estimate depends

on which node in the RC network we have chosen as our output node. Finally,

since TD. is just a single number, the use of TD. alone takes no account

of the threshold voltage of the device driven by node G) A simple

procedure for accounting for the logic threshold is presented.

a.) Definition of T

We define T in terms of the response at the output node to

a step transition at the input. We allow for a non-zero initial

.. . . . . . . . . . .... .. . . . . . . . . .



equilibrium at the time of the step input, and denote the initial equilibrium

.voltage distribution with the vector v= ) T. Using
o-o

-0 0 20 N0
the same notation as the previous section, we denote the final equilibrium

voltage distribution with the vector veq (v , v2  . v The
eq eq Neq

step transition can be either a step increase (v > v ) or a step decrease
eq .o

(veq_ < v ). The amplitude of the step input is equal to - (v -Cv ___ -(v. v.).
-eq o x. i ."

. eq o

Definition:

TD eqv - dt, (13)
v. -

0 eq 0

where v. (t) is the response at node $ to a step transition at the input
1 1

at time t=O of amplitude -i (v. - V.;.
2. I I

T. eq o
Graphically, T is shown below:

D.

v 
"" v t.2

eq
V , e - v ,i

1

shaded area T

0 t

Fig. 6: Definition of T
D.

S.s

L"

': '2 ¢ - - ,
" '.

- " " '.€ '- ." .-' '', ---.' ' '. .." - -" " : - , - k " . -. . . . . - . . -. ,. ,. . ,. -. -. .... .. .. v -'-



b.) Computation of T "

Rewriting the canonizal matrix equation for a step input, we have:

v - v(t) = [RclV(t) ; t>0 (14).
-eq . --

Taking the i th row of this matrix equation,

v - v. (t) R C k1 (t) t>0 (15)
1 2 ikk k

eq k

(where is taken over all capacitor nodes in the RC network).
k

Dividing by v. - v. and then integrating from t=0 to t=-, we obtain
I I
eq o

T
DT

A fv i v i R kC~ k f t) dt

S v. tv. v. - v.

1 1 1 1
eq 0 eq o

RikCk (vk V k
v. - v

v I.eq o

So in order to compute T we need to know:
D.

I

1) The initial and final equilibrium voltage distributions, v
0

and Ve. Note that this is really equivalent to knowing the single
-eq

vector x, since for a step input we have v = xe(O) and v = xe(O).
-0 -.eq

In fact, we can express T in terms of x instead of v and v
D. -.0 eq

T 1 Rkkk (17).TD  = . kRikCkyk

D.".
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th2) The i row (or column) of the resistance matrix R.

3) The capacitance matrix C (this requires no computation). .

Note that when we are dealing with an RC mesh (i.e., no resistive

paths to ground) starting from a zero initial equilibrium, then v =0 and

v = Vk for all kfi. Hence TD. reduces to R ikC k , which is consistent
eq eq I k ikk

with the definition given in earlier works [1], (2].

c.) Alternate Interpretation of T
D.[

We have already defined T in terms of the response observed at
D.1

node , v.(t), to a step input applied at time t=O, when the RC network

is at some (possibly non-zero) equilibrium. Alternately, we can interpret

T in terms of v'.(t). Note that v.WCt), in addition to being the time

derivative of v. (t) is also the response observed at node Q to an impulse
input applied at time t=0, when the RC network is at zero equilibrium.

We will show in the next section that the step response v. (t) is
-.

monotone, which means that 1. (t) can be interpreted as a density function

for a continuous random variable, when properly normalized:

(t)) normalized (t). V- t)

T is the first moment (or "center of mass") of this normalized zero-

state impulse response, as shown below;

Integrating by parts,

~ ~ (t. v vi  - (t)v -v(t t=1 dt eqeq .tt,0 e dt - t
t v. -v. v. -v. v. - v.--

0 e 0eq 0 eq 0 "'

T 0 (19),
0.

'- .. -. -. . . . . . . . - . - . . 9
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where we have used the fact that limit t(v v (t))=0 because v (t) v
t -  eq eq

exponentially as t-.

d.) Incorporating Logic Threshold:

As mentioned earlier, the use of TD. alone takes no account of the

threshold voltage of the device driven by node To do need an

estimate for the entire step response voltage waveform v. (t). A reasonable

estimate is

-t/TD

vi(t) v. + (v i -v i  )e i (20)
eq o eq

since, like the exact but unknown response:

1) v. (t) starts at v. -
0

2) v.(t) is monotone.
i

3) vi (t) asymptotes to v.
eeq

Sv. - (.t) e
1 1

4) vi - dt T
F"v. v. D.eq 0

In the next section we will show that vi (t) always lies between the best

currently available upper and lower bounds on the exact step response v. (t).

We can invert this estimate of the entire waveform in order to

estimate the time to reach a given logic threshold voltage vT.

t/TD 1.
". q vT - v. ( -v, )e 0- 'j (21).v vi -v vT t T in

T 1 1 -r D. V
eq o eq e T

Example: If the logic threshold of the device driven by node is

v - v 1 (v. - v. ), then instead of using T as a delay estimate,
0 2 eq 0 1

0 -. -. .. .-..-

--- I.o -
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we use the somewhat lower estimate, T Ln 2 0.69 T

Example: If the logic threshold of the device driven by node 0 is

v V. + v - v. ) v. + 0.63 (v. - v. ), then we use
T e0 0 eq 0

exactyD. as a delay estimate.

11
The estimate (20) is not generally exact: for one thing, it contains

only a single natural frequency: 1 To better appreciate the nature
T
D.

of the approximation involved, Horowitz [7] has noted that, in the case

of no grounded resistors, a sufficient condition for (20) to be exact is

that the time derivatives of all the capacitor voltages are equal: i.e.,

V (t) ( vt) for all k. In the case where we do have grounded resistors,
k

the estimate (20) is exact when the normalized time derivatives of all the

capacitor voltages are equal:

Sv k -- for all (22).

eq o eq .

th
We can see this by going back to the i row of the original system of

equations for the node voltages:

v. - v.(t) R. C (t)
eq k"

~v k - v

R e ,v (t) ; using the approximal Lon
ik- v. -V. i'k 1e 2. . .

eq 0 in (22)

k Rk ( v k - k
k ,", (t)

V. V.1'-

qeq o ]
=T .(t) (23).

D. ."

2"..

- .~~~~~~ . _ . * . * . . . . . . . . . . • . . . - . • , . . - . . •



The solution to the first-order differential equation given by (23) is

v i (t) = vi ( t).

Another view of the nature of the approximation (20) will emerge

from consideration of the step response bounds, which we consider next.

VI. Optimal Control Method for Determing Bounds on
the Step Response

-S
The purpose of this section is to clearly derive step response bounds

for leaky RC meshes using an optimal control point-of-view. The bounds

derived will be analogous to those in [1]. Recent bound-tightening

results such as slew-rate limitations [8], and (in the case of RC trees)

spatial convexity (9] will not be considered here. These recent improvements

are omitted because they do not add to the basic understanding of the

optimal control approach. We do not yet know exactly to what extent

these bound-tightening results can be applied to leaky RC meshes. It is

clear, however, that at least the simplest of the slew-rate limitations

applies and always gives somewhat tighter bounds than those developed here.

a.) Preliminary Results:

Fact 1: For any three nodes Q, ®, (of a leaky RC mesh,

RiiRkj j Rk.R.. (24),

where the resistances in (24) are elements of the

resistance matrix R in (1).

..
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i.

The proof of Fact 1 depends on certain properties of the conductance matrix p

G. These properties, as well as the proof of Fact 1, are given in

Appendix A.

Fact 2: For any node 6 of a leaky RC mesh, the observed

response, v. (t), to a step transition at theJ

input applied at time t=O, when the network is

at some (possibly non-zero) equilibrium, is

monotone:

W > 0, Vt > 0 ; if v. > v,
3eq I

v.(t) < 0, Vt > 0; if v. < v. (25).
eq

The proof of Fact 2 is also given in Appendix A.

Fact 3: For any two nodes , ( of a leaky RC mesh:

On an "up" transition (v > v ) we have,
-eq -o

Rii[vk - vk (t)l > Rki[v - v.(t) l (26)
eq eq

v Vk t [v - v (t)] (27).'ki [keq k k i " '
eq eq

On a "down" step transition (v < vO ) the sense of
*.eq _o

each inequality is reversed,

R - -v (t [v vi(W)] (28)

Iii eq eq

i, - v(t)] > R [v. - vi(t)] (29).

1kik k 1k 1eq eq

4-2-

io

I -1

.. . . . . .. :-...; . - •_--/: _--i..-_: '- .2 .¢ ¢ ¢2. 2 .2: -.... .-.- x...2.. '.: £-i. - •-. . .. . . . . . ..... ..ii -•-- .,: _ _ .:..-
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The proof of Fact 3, which uses both Fact 1 and Fact 2, is presented here

in the body of the report.

Proof of Fact 3:

The system of differential equations for the node voltages is:

v - v(t) [RC]v(t) (30).
-eq ... .

th

Taking the k row ->Vk Vt) (t) (31).
eq

thTaking the 1 row -> v. - vi(t) R. .C.v>.(t) (32).
eq j '3 .

Using (31) and (32), we compute:

ik v (t)]-R[v. -vi(t) ]- (RiRj - Rk Rij)Cjj. (t)

eq eq (33)

By applying Facts 1 and 2, (26) and (28) now follow directly from (33).

By interchanging the subscripts i 4- k and using the fact that R is

symmetric, (27) and (29) follow from (26) and (28) respectively.

b.) A New State Variable:

At this point, we will introduce a new state variable, fi, that

will be part of the reduced order model in the formulation of the optimal

control problem. We also will prove a lemma concerning f.. The result

of this lena will serve as the state constraints for the optimal control

prob.lem. The presentation of the optimal control problem itself is

delayed until later (part (c) of Section VI).

The new state variable is defined as follows:

"I%

- . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .............................
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V. v. (t ')

ea
f (t) dt' (34)

t eq 0
where (as usual): v. (t) is the response at node to a step input

I

at time t=O.

v. is the initial equilibrium voltage at node .-

1
0

V. is the final equilibrium voltage at node Q .

eq

This definition is illustrated below:

v. - v. (t)

V.- V.
eq o

shaded area f (t

0 t t

I

Fig. 7: Definition of f.
i

Note the similarity of Fig. 7 to Fig. 6 (where we defined T.). In fact,

we can verify directly from these illustrations the initial condition:

f. (0) = T (35).
1D.

Due to normalization in the denominator of (34), the behavior of f.(t) is

the same for "up" steps and "down" steps of arbitrary magnitude at the

input. Starting at T when t=0, fi(t) will decrease monotonically towards
D.I
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zero as t~

Le2mma: For any choice of output node (9in a leaky RC mesh,

V. W..

eq eq

where: R ik Ck (37) .

T RkkCk (38).

Proof of Lemma:

starting with the i throw of the canonical matrix differential

equation,

v. - v.(t) R ik .Ck r k W) (39),

eq k

we divide by v. v ,and then integrate from t'=t to t'=-.'to obtain

eq o

f. Ct) ;:eg:v(' t k Rik k It vk~ t

V. v. V. - V,

eq o eq o

R kC k(v k v(t))
k eq (40).

V.i - V .eq o

Using (26) from Fact 3 on an "up" step [or (28) on a "down" step] in (40)

gives: R ik'k ki(v. - W)fl

i. -V. V.

eq 0

R 'k Ve; .t (41),

*~~i 
ik v - j . . . . .
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where we have used the fact that Ri= Rk, by symmetry of R.

Using (27) from Fact 3 on an "up" step (or (29) on a "down" step)

in (40) gives:

R kc kk (V. - (t

f(t) < k keq 
!!

eq o

v. _ V.(t)

RkkCk v - v (42),

eq o

where, again, we have used the fact that Ri = Rik. Together, (41) and

(42) constitute (36). This proves the lemma.

c.) The Optimal Control Approach:

The step response bounds, as in E1], can be derived by "ad hoc"

manipulation of (25) and (36), but the methodology is somewhat obscure.

A clearer view emerges from recasting these calculations into the form of

a linear minimum - (and maximum -) time optimal control problem with state

constraints. In addition, this approach has the advantage that it becomes

much clearer how to incorporate additional information in order to obtain

tighter bounds.

The optimal control approach is based on a reduced order model of

the voltage transition process at a selected output node 0 . We regard

this process as being described by the following second order model:



+ u (43)

where:

Wi g. Ct) is shorthand for the normalized "distance to go" for

244

the step response at node G

v i v (t)

= ~ git + e)(3),l,

A1  1

1 w
eq o

(ii) f t) is defined as in (34).

V. - v.(t-)Sv -v I ) .
eg

v.e - (t.(tt)

(Note that fi t) vi _ Fi dt'
t e o

so by the fundamental thegrem of calculus we have

-gi (t), as in. (43).]

(iii) The input u(t) is introduced to represent the unknown waveformr .(t) -'-.

eq o

In addition to the dynamics in (43) we also have,

initial conditions (see (35)): f.(O) T

-- 145),g"

gi(0)J
[ = j L :i

state constraints (see (36)):

T W < fit) < T gilt) (46),

and the input constraint (see (25)):

u(t) < 0 (47). *1

.7-i

...............................................
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. .. To arrive at upper and lower bounds on g (t) we pose the following

optimal control problem: What is the minimum time t min(g) and the maximum

time t (g.) required for a solution of (43) to pass through a given "target"
max "tret

value gi (with 0 < gi < 1) and still satisfy the constraints given by (45),
* *

(46), and (47)? Once the maximum (minimum) time t (g.) (t (gi)) is
max 3. mi.n 3

known as a function of gi, then the inverse function gives an upper (lower)

bound on gi(t). (An upper (lower) bound on gi t) can then be easily

converted to a lower (upper) bound on the voltage step response v. (t).]

The above problem is called a "state constrained linear optimal

control problem" and the Pontryagin's maximum principle could be used to

find the optimal u(t) and the resulting optimal state-space trajectory

(f.(t), gi(t)). However, the problem can be solved in a much simpler way

as follows. Regard any trajectory in the fi-g i plane as a function of

f '' i.e., gi(f.). From (43) we have

dt - - df. (48),
gi I"

and the time required by the trajectory to pass through two points A

Cf (0), g (0)) and (f.(T), g (T)) is

CiT) ff.(0)

g f dt - - df. (49).()gi(fi) di f gi(fi"
0( ) 1 . f.(T) ...

_212

- . .
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slope-

, .: ._q s l o p e -
T P

/ R.

/, .1'

g,

0/

strt atO ,g~ (f (01 0) T)1 n eas n ,i

/ -...p

/

/ ". -

° -
gi-:-- .

to hane fom 11oapriua au h oet(ihs)psil

Fig. 8: "Typical" trajectory in the mi i ( plane o

The trajectory corresponding to a voltage transition at node 

starts at (im),g(O))= (%i 1) and because f st) s0 and tjt) _ 0, it
moves down and to the left towards the origin (see Fig. 8). The trajectory "

is confined to the region between g1 - -f. and gi - -R.f as stated by

the state constraints (46). From (49), it can be seen that for gi Ct)

to change from 1 to a particular value g.' the lowest (highest) possible i,-

trajectory (i.e., with the minimum (maximul) possible g (t)) over the " "

widest (narrowest) integration interval on the f-axs.eqirs.ax.u

(minimum) time and therefore is the sl.owest (fastest) trajectory. We can

, ... . -*
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* * 
-. °

then calculate tax (g) and t (g.) for the optimal trajectories, using

(49).

Solution to the maximum-time problem:
WI.

There are two different algebraic forms for t max(g.) over the range

0 < g. < 1. This is a result of the fact that the maximum-time state T

space trajectory assumes a more complex form as g. is decreased below-

Case #1 T . < 1

slope= 1
TR.

/ 
1-o

D /T/

0 T

T~9 /T -- - -- - -- A

D. 
D.

/ - f

, -,

I-I

TD. *

Fig. 9: Maximum-Time Trajectory (for < g <
T

using (49),

I-

a........ -*.
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T T F0 ; .
D i

CaT (g d f T T
max I (TgT 1 D i)- g T g.

T
D.

T (50).

T R.TR. i Tpi TD 
,'i

* - 1 . 5>

T

.[~ ~ ~ ~Cs #2 g ( 0 : aiumTm Trjcoy(o 9 i < -

-D

i-

A Ri

T .0

Case 2 , (0 . .' < - : "

T~1

Pj~~e=R

9i/

0( T9T f) -
0.. _ __ D

/* -



* ~g ~ D.29

*t (g.) =df +- df.max 1. JT~g* f i)

Tg T
1 [TPi R D.i+TP on( nT k

T~r gT + T L ~ gf df1)

T 9
= ~ET~~ -T~g] + (j~(r)

Thee retheedifeen aleric fom D.r tPi ( ve h

. R.

= T T +t -5)
P P R. P i

2. ~ Tp41



T .
Case #1 i <Tp 

.

T R.

S 1 ,2.

9/

-~~ slp T lp =.

I Zslope T

a_ - - •

T /T P1/ .

.-

I 

,

/ s

0.
'1 

- . *

D*

Fig. 11: Minimum-Time Trajectory (for T < g <
p

Using (49), we see that there is no area (along the f-axis) under

the minimum-time trajectory, so:

t ,i (g.) = 0 (52).
min i

.4

* - - U.-..
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fT T

Case #2 ~T <<-

gi

Ss = iope

TT

" - -

/ ''-'
g. D. 1)

I. *2.I d .

T /T ? .. ..-- ---
R. P/

Ri P

-I .(g D I.:

/ 
--".

-..--
'.

min df T T g (53).

PgiTp i  T T

* D.
T T-

f. ~d JT f (53).

%Z
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T.

Case #3 (0 < g ):

slope TR

/ -. ,

/T

-----------------------------------S/(D~l -.. lslope= T
- P

s I -":?

: --,' - I ---
/T I -

R. , I "

/. I +,--,

I, I

f .
0 Tg T T

P i RD 0.~..1 1"

T
R R.

Fig. 13: Minimum-Time Trajectory (for 0 < g <
.- °'P

Using (49),

(1-

mi i 1f i .

i R -"

TR TR  df + df

Si R.1

T [ Tn(T ) - (T g )] + [T - T
R . R . D R.

f + T T ( 4 ) .
.", T R  i + -: • , ..+T Tg. g *T - :"-

1 1

.... .-.. :. i..-',..-'. ---.- '.-.+.' " . -.. .*.. ..... .... . .
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The results in (50) - (54) can be summarized in the following graph of

both t (g.) and t mi(g.) vs. g. (over the entire range 0 < g. _ 1): <.
max I min 1 1

t t *
(g.)max ( At

Y~mi i"' IXo(51) I

T T i.D. R.

1

((50)

I-N-

(52) I...

1 D

T T

g t sls hno qa othe value of g. that is reached via the mnmmtm rjcoyi

V time t. For this reason, the inverse functions of ta(g and t n(g

Rmn .:.



are upper and lower bounds respectively on g~ Wt.

j.C) < g. (t) < g. (t)

where 3Cit) =tmin Ct)

gi () tmax- t 5)

These bounds are plotted below:

(50)
(52)

T
D.

11

T-----
T T(51T-

T. 
1

1 T -T T -T
-R D. R.

TDq. 15 1onso t

1 0+T t. R. - - P .

TD () -T )/T <-t/TT
i R.D P 

-e I e ;tTTi -

T- P R.

(56).

....... ...... ...... ...... ...... ...... ............ .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



T -
D..R

T (TD-Ta)/TR. t/TR
1. R. t. 1 t T -T (57).

e e-eD. R.
T1 i

P0

Finally, the bounds on g.i (t) can be easily converted to bounds on the

voltage step response v. (t) as follows:
1

j. Ct) < -i() V V. <g()(58).

1 1
eq o

V. t < v. C t) < v. t

where, v() v. - (vi - V. )g.(t)
eq eq o

- (v. i v. .t
eq eq 0

These bounds are plotted below:
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.v. (t)

I1

T R

V. T - Iv-v.i
eq k' eq oi 

V. (t)

T -

eq T- eq o--------------)

i

0
T -T T-T
D . P R.

Fig. 16: Bounds on v (t)

Now that bounds for the step response have been derived, it is

worthwhile to reconsider the Elmore waveform estimate discussed in Section
~t/TD

V, V Wt v v. + (v.i - v )e i .When plotted in the f.-g9 plane,
eq o eqI-

the trajectory corresponding to v. (t) is a straight line from the initial
1

condition (f. (0), g. (0)) =(T ,1) to the origin. It is therefore a
1f. f.

feasible (lies inside the state-constraint cone: -_L<-g < -- )but not
T - T T - T
P R.

optimal solution to the optimal control problem. Hence the Elm~ore waveform

estimate will always lie between the upper and lower bounds on the exact

response vi (t),

-1 1 1

.'.-
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* . For any leaky RC mesh it is always true that T TD. < TP (evaluate
R. - 0

1 1the state constraints (46) at time t=0; see also Appendix B). The Elmore

waveform estimate, v. (t), represents an effort to approximate the dynamics

of a higher order network by one with a single time constant T : the
D.

estimate is exact only in that case. However, vi t) is a very good

estimate whenever T - T << T because this means the state-constraint .-'P R. D.
1 1cone shown in Fig. 8-13 is very narrow, so the actual trajectory in the

f.-gi plane is well-approximated by the Elmore trajectory of a straight

line of slope T- [In fact, the voltage bounds, v.(t) and v. (t), are
D.1

very tight whenever T - TR. << TD. for exactly the same reason. The
3.1

minimum- and maximum-time trajectories are very close together simply by

virtue of the fact that they each must lie inside a very narrow state-

constraint cone.] -

VII. Bounds for Non-Step Inputs

In the previous section we derived rigorous upper and lower

bounds on the step response voltage waveform at any selected output node

A question which naturally arises is: How do we bound the response

at node C) to an arbitrary non-step input? In this section, we will show

a general method for deriving bounds for an arbitrary input in terms of

the step response bounds. We will first consider the case where the

leaky RC mesh is at zero initial equilibrium (this treatment is essentially

the same as the one given in Appendix E of reference (11). We will then

show how these results can be easily adapted to an arbitrary (possibly

non-zero) initial equilibrium. Finally, we will carry out the calculations

'.l,'i ~ e -' f,' i ;- i~i _.' ZJ .'.'D i. _.'_. • ...Z : L • i -" '' -'' ''l "" ''' "' '_, '-' e '' ':,, .'_: " -' lI.
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explicitly for a particular example: a saturating ramp input.

a.) Non-Step Input (Zero Initial Equilibrium):

The method presented here depends on the fact that the RC network

is linear (and time-invariant). We will first introduce some notation:

A .so-ul
hi (t) = zero-state response at node 0 to a unit impulse input.

Aw. (t) -- zero-state response at node Q)to a unit step input; so .
1

.(t) = hi (t).1

(Here we use the notation w. (t) rather than v. (t). The reason

for this is that w. t) denotes a more specific waveform than was denoted
1

by our previous usage of vi t). We had previously used v. t) to represent
1 1

the response to a step input of arbitrary magnitude starting from some

arbitrary initial equilibrium. Note also the difference in dimensions:

v. (t) has dimensions of volts, but w. (t) is dimensionless since it

represents the unit step response.]

e(t) arbitrary non-step input.

yi-t) zero-state response at node C to the input e(t).

Using Laplace transforms,

Wi(s) = H.(S) 1 (61). b

Y.(S) H (s) E(s) (62).

Combining (61) and (62) we have,

Yi(s) (-H - (s)] [sE(s)J - (W (s)] (sE(s)] (63).
I 52...,

Ld e ( t ) }But, sE(s) = L t ; assuming e(0)=0 (64).

dt :: -
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So converting (63) back to the time domain (and using (64)), we have:

rt
de(t) = .tt)de(t')

Yi(t) = w. (t)* t- = i(tt.) dt dt' (65).

The step response bounds for w. (t) are given by:2. .1*

W.i(t) < wi W) < wi W (66), '

where (referring back to (59)) we have:

w ) W xi(l-gi(t)) (67),

since w. =0 and w. = x..
2. 1 10 eq
In order to obtain bounds on y(t), we note that convolution of

dt dt

and reverses the sense of the inequality when de(t) < 0 Vt>, i.e.,-dt ..

de(t) < (y.(t) - w(t)* de(t) < - de(t) de(t)
w.(t) < (yW w de* 1)

dt - 1 dt - - 1 *0 tt > 0

t) de(t) < (Y.(t) w(t)* de(t) < w (t)* de(t) de(t) <0 Vt >0
1 7t - i u ---- dt dt - -.

(68).

So, when the arbitrary input e(t) is monotone, the bounds on yi(t) are

given directly by (68):

F.
° o~~~. . . . . ° . . . . . .• *,°
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Y < y. (t) < y.(t (69).*
1 1

(tt)de Wt' e nresngP

±. (t-t' dt' ;e t) decreasing

ft de W'
f t delt' dt' e~t) ncreasing

f de(t')

S (t-t) dt' dt' e e(t) decreasing

y CAD a i (the i

moooewveom.ec (the' bond given inc9 resfi cient fo

moe n t ' rade (t')

0 (t r' ;t e(t) decreasing

positive and negative slopes, we can still bound the response y~ Ct) in

a similar way. we do so by considering separately the time intervals where

wit~t, det) t ;et)icrain .

> a de) < 0 when we perform the convolution operation (for
dt dt

details, see Appendix E of (l]).

b.) Non-Step Inaut (Arbitrary Initial Equilibrium)

Suppose that we desire bounds on the response y. Wt to a non-step

input eet) when we are starting from some non-zero equilibrium.

Define:

In aCt) eot)dele b)

ay (t) =y(t) -y(O) [Ay.t W y.(t) - y(0)) (70).

-7-

- ." .



CVWe can derive bounds for the response Ay. (t) to the non-step input

Ae(t) by the convolution procedure discussed in part (a), since the

*(A y, Ac) system is starting from a zero equilibrium. Just add y.i (0)

to these bounds in order to obtain bounds on y. (t):

where, Yit) = yi (0) + Az(t)

y.(t) y~ (0) + Ay. (t)(7)

The justification for this is that the (A y, A e) system is described

by the same differential equation as the (y, e) system:

=(RCd (xe(t) -y(t)) ;see (9)

-[RCd (x(Ae(t) + e(0)) - (A y(t) + y(0)))

[ RC] (x Ae~t) + xe(0) -A y(t) -y(0))

cancel, since y(0) =xe(0)

-[RC] (x Ae~t) -A y(t)) (72).

c.) Example: Saturating Ramp Input

The non-step input, e~t), considered in this example will be

called a "saturating ramp" since it starts from zero volts at time t0O
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and rises linearly until it saturates at V volts at time t = T
sat vsat .

(see Fig. 17).

e(t)

V

sat -9

It
0 T

sat

Fig. 17: Saturating Ramp Input

Furthermore, in this example the bounds calculations will be done under

the assumption that the ramp rises sharply compared to the characteristic

time constants of the RC network being driven, Specifically, we shall

assume:

0 < T < min {(T i - TR ), (T - T }  (73).
sat -D. R. P D.

[There is nothing fundamental about the assumption in (73). Upper and 9.!
lower bounds for any choice of T can be calculated by the procedure

sat

outlined in this section; the only difference being that the convolution

integrals in (69) could assume a different form.]

In the following bounds calculations for the zero-state response

at node ( to the saturating ramp input e(t), we will make use of the

following abbreviation:
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K. . (74

:.-a Asat

K = - (74).
2. Tsat j .

(Note that x. is dimensionless, so that K. has dimensions of volts/seconds.)

Upper Bound: There are four different upper bound formulas depending on

the value of time t.

Using (69), we have:

1) for 0 < t < Tsat

T -(t-t')
tt D.Yi(t) --Ki [1 T ]at'

0 p ""t

(1 D. 
2

K. [(1 - t (75).

2) for Tsat <t < TD.- TR.,

T D.-(t-t')at

Y.(t) = K. [1 T ]dt'

SD. T T
2. sat satK la -T s) T +- t] (76).

i  p 2T sat

3) for T -T C (T -T )+ T
D. R. t < D. R.) sat'

t(ToiTRi) T

( i-i TR e(TDi-TRi)/TRi e-(t-t')/TRildt," i~t "i fo [ T

T
sat T -(t-t')

. K f- T ]dt'

.-' .t-.(TDi-TRi)

... . ..

. . . . . . . . . . , .
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-i4 4

Ki (Ti-t) [t-(T2 -T + 1 (t-(T -TR ) I

TR. (It- (TDi-TRi/T TD. R.

[ (1-e li Ti + (i gTat )T + Ttt- t2T p TP 2T p sat F

(77).

4) for t > (TD- T ) + T
- . R. sat

Trsat TR, (TDi-TRi)/TRi - (t-t')/TRi [

y.(t) = K. J [i -- e e ]dt'1J 0  Tp .

T2

D-. (R+T t) )/TR. at /TRi
LKiiTsat Tp

(78).

Lower Bound: There are five different lower bound formulas depending on the C .

value of time t. -.

Using (69), we have:

1) for 0 <t <T -T
- -D. R.

X.W(t) 0 0 (79).

2) for T.- T < t < (TD- T) + T
D. R. - . R. sat'__

2.,D.
-i~t) W K i f (t-t,)+T ] dt'

0" R
Nj L' t- ' )4 "

-K t_(T-D T1R . i (80).

.. .......................................-, ,............. ........,,=
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3) for (TD TR) + Tt < t < (T- TR),

T T
sat D.S.t =K .lrj

-(t) K 1 (t-t')+TR dt• 0 R.--

t+T 
(81).

K. TT TT I
Ki Tsat TD. t+T _sat.

~~R sa+T

4) for T T t < (TTR + satp . P R. ,.a.'

t- (Tp-TRii)

" D..1 (Tp-TRi)/T

To T- T e l dt-

T
sat T-sr

(82)._,".

K. • e ]dt ' ..

K -( (t-t')+T dt

tp- T~Tj)

- K. T-TT -TT-Ct-IT TR ))/TKi Tsat D. Rn t+TRT J T D -e p

(82).

5) for t-> (TP-T R.) + T st'

T
sat T1

*~( -.pTRi/Tp -t-t')/T

W KCt) (1 I-e e II det

-Ct-CTp TR+T ))/Tp T /T
-~~~ K.RT - i sat) P sat P

sat D

(83).
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VIII. Additional Computational Burdens Arising from the
Presence of Resistive Paths to Ground

I

The formulas for the time constants TR , TD., and T indicate that

the information required in order to compute bounds for leaky RC meshes is

as follows:

th -

1) The i row (or column) of the resistance matrix R.

2) The diagonal elements of the resistance matrix R.

3) All elements of the vector x (i.e., the equilibrium voltage

distribution for the entire network when a 1-volt source is

applied at the input).

Items 1) and 2) above do not represent much of an additional

burden over non-leaky RC meshes that happen to contain resistor loops. If

a non-leaky RC mesh contains resistor loops, it is already difficult to

calculate the entries of the R matrix. The presence of grounded resistors

does not make this already difficult problem that much harder. If,

however, the RC network under consideration is a leaky RC tree, than items

1) and 2) post a clear-cut extra computational burden. The reason for

this is that the entries of the R matrix will require some computation:

we cannot read them off by inspection as we can with a non-leaky RC tree

Item 3) above represents a clear-cut extra computational burden

regardless of what the underlying non-leaky RC mesh looks like. For a

non-leaky RC mesh, all equilibrium voltages are equal. If resistive

paths to ground are present, then some computation is required. However,

as the following lemma shows, the extra computation for the equilibrium

N7.
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voltage distribution caused by the presence of any number of grounded

resistors in the RC network is no worse than the extra computation required

to consider only one (in most cases) extra node in the RC network as an

output node to be bounded.

Lemma: Assume (as is usually the case) that the RC network under

consideration has only one capacitor node connected to the voltage

source through a single resistor (see Fig. 18). Label this node

as "D", and label the resistor connecting the source to node G'

as "R ("source resistance"). We have the following relation:
s

RklI
S- ; V nodes k in the RC network (84),

S""

where R is an element of the resistance matrix R.

"Rest of RC
R ,Network"

v
0

RS C-

Fig. 18: RC network with only one node connected
directly to the source.

P-
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Proof of Lemma:

Assume the input voltage source is a step of magnitude vO volts at

time t=O, and that the network is starting from a zero equilibrium condition.

The differential equation for the RC network is,

-RC]C'(t) v - v(t) (85).I - - - .eq

th +
Taking the k row at time t=0 +

, we have:

R RjCjvj (0+ 1  - vk(0+) (86).
eq

tv(0 ) =0 for all k, and '.(0 ) =0 for all j except j=l. So (86)
But (86) oral , n

k

becomes,

R.Cll ) = vk  (87).
eqv

We identify ClV I (0 
) = as the current flowing into node at time t2

t=0 ,

SVk (88),
Rk R ks eq

vk k

e :(89).
Xk v R

0 S

This proves the le"ma.

This lemma shows that computing xk for all k is equivalent to

computing RkI for all k [i.e., the first column (or row) of the resistance

matrix RI However, the first column (or row) of R is exactly what would

be needed if we wanted to bound the response at node C. Hence, the

calculation of the equilibrium voltage distribution is no worse computationally

iit
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-; *::2i than considering one more node as an output node.

Note that in the rare case when there are M>l capacitor nodes -

connected directly to the source by resistors R .... RS, then a
S 

1,M

straightforward extension to the preceding lemma holds:
"S

MR-- l V /;V nodes k (90).
j~l RS.

This means that calculation of the equilibrium voltage distribution is

equivalent to computing the first M columns (or rows) of R, which is

computationally equivalent to considering nodes .... as additional

output nodes to be bounded.

The computational problem now consists of finding the first row
it h

(or column) of R, the i row (or column) of R for each output node 0,

and the diagonal elements of R. Unfortunately, the R matrix is "global"

in character and is difficult to compute if there are resistor loops or

resistive paths to ground. However, the conductance matrix G R

is "local" in character, sparse (i.e., has many zero entries), and can

be determined virtually by inspection even when there are resistor loops

or grounded resistors present. So one approach is to determine G

directly and then invert it to find R. This approach, however, raises

some doubts because it finds all of R instead of just the entries of R

that are actually needed. An alternate approach is given below.

Alternate Approach: P

In this alternate approach, we only calculate the entries of the

R matrix that are needed. If the entry Rik of R is desired, the conductance
.- S.'
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matrix is "personalized" to nodes and C by eliminating nodes in the

original resistive subnetwork as much as possible without destroying the

topology of node G with respect to node @. We will illustrate this

method with an example calculation.

I.'

VV.

datum 0
(grounded) 10

1 in ,1.1

Fig. 19: Resistive Subnetwork for Example Calculation of
R (all resistors are 1-ohm)
ik

The resistive subnetwork for the example calculation is shown in Fig. 19.

We wish to calculate the entry R of the R matrix that describes this
ik"

resistor subnetwork. The first step is to "personalize" the subnetwork

to nodes and by eliminating as many nodes as possible (see Fig. 20).

10 2Q

datum G, 3Q

(grounded) 1V

Fig. 20: Resistive Subnetwork from Fig. 19,
Personalized to Nodes and.

, . . • .I - # . . . . . .V L I - £. , L . L. . L. .. . -.
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Note: We will use a prime to distinguish the subnetwork in Fig. 20 from

the subnetwork in Fig. 19.

The key point to notice about this node elimination procedure is

that,

R ik R ik(91).

Hence, we can determine R from the much smaller conductance matrix G
ik

(rather than G), either by directly inverting G or by using cofactors:

I I I I "

R = R = 3 -(cof GG )] (92).
ik ik 32 G23 /(e

The conductance matrix G can be read off quickly from Fig. 20 as:
, 3-

3 1
- 2 - (93).

1 1 11
3 2 6

Using the cofactor method, we have:

3 1 1
2 2 -1 2 - 2

11 1 9det G + (94).6 3 4
1 11 _1 11 1 1

2 6 3 6 3 2

o6

cofG =- = 5 (95).

23 4
1 1
3 27-.. '.4.



* ' (5/4) 5 :

- -~ -v r~wv . ..- .

R R (96)
ik 32 (9/4) 9 9)

This result of R - Q( is correct, and can be verified by going back to
ik 9

Fig. 19 without considering Fig. 20 at all.

In summary, this approach suggests a tradeoff. Instead of doing

one calculation with the large original conductance matrix G, you can

do several calculations with smaller "personalized" conductance matrices G
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Appendix A: Proof of Facts 1 and 2

The proof of Fact 1 depends on additional structure of the

conductance matrix G alluded to in Section III. -.

Lemma: Assuming all resistors in a given resistor subnetwork R are

positive, the conductance matrix G which describes R has the

following properties:

1) G 0 Vn (i.e., all diagonal elements are positive)
nn

2) G < 0 Vm~n ; (i.e., all off-diagonal elements are
mn

non-positive)

Proof of Lemma:

Apply a 1-volt source to node o of the resistor subnetwork ..

Ground the datum and all external nodes other than On

The Thevenin equivalent circuit looking into node O is a positive

resistor to ground (vthev=0). Since we are applying a 1-volt source to

node O, positive current flows into node ( =D G >0.
- '-' nn

The Thevenin equivalent circuit looking into any other node -

(m#n) is either a positive resistor to ground (v =0; occurs when node

they

M is not connected to node 0 through a single resistor), or is a
*

positive resistor in series with a positive voltage source (v , ;.they .
occurs when node is connected to node - through a single resistor).

It is intuitively clear that the open-circuit voltage at node C is
non-negative. This fact is a special case of the "voltage minimax theorem"
[3; pg. 778].

-.- 4.
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In either case, since we are applying ground to node ,m there can be

no positive current flowing into node -- G < 0.
mn

Proof of Fact 1:

(See Section VI for the statement of Fact 1.)

The proof below is essentially the same as for non-leaky RC meshes

given in [21: -

If i=j or irk, (24) is satisfied trivially. If j=k, then (24)

2
becomes Riik >. since R is symmetric, and is true because R is

positive-definite and hence the 2x2 principal submatrix of R consisting

of elements in rows i or k that also lie in columns i or k must have a

positive determinant. Now suppose i, j, and k are distinct, and consider

the resistive subnetwork R obtained from the original resistive sub-

network R by open-circuiting all external terminals of R except C' 0 3

O, and the datum. Taking terminals 1, , of R as terminals

'O Q' 0 respectively of R, we see that R has the following resistance

matrix:

rR.. R. . R
3.I i 1 ik

R IR.. R.. (A-).
31  jj Jk --

ki Rkj Rkk

Now consider G = R1, the conductance matrix of . The off-diagonal

elements of G are non-positive (by the preceding lemma) , so in particular

G k < 0. Taking the inverse of R using cof actors, we see that

Gk (R-. = ((cof R )/(det R)l < 0. Since R is positive-definite

kj - kj jk

%'."



2+3=>det R > 0, it follows that cof R < 0. But cof R (-1) (R R -
-*jk- jk iikj-

R ki'ij). This proves (24).

,0.
Proof of Fact 2:

(See Section VI for the statement of Fact 2.)

Assume that the step transition is "up", i.e., v > V. We
..eq -0

want to prove that j (t) > 0, V nodes j in the leaky RC mesh. (The

argument for a "down" step is entirely analogous.)

Note first that (0+ ) > 0 for every capacitor connected to the

source through a single resistor, and v.(0 ) - 0 for all other capacitors.
3

+N
Therefore v(0 ) lies in the "first orthant" of M N (the generalization

2
to N-dimensions of the "first quadrant" of IR).

We claim that v(t), once inside the first orthant, can never leave.

To see this, first differentiate (12) to obtain the following differential

equation for the evolution of .(t):

v(t) - -[RC] - (t) -[C' G] (t) (A-2).

The off-diagonal elements of G are non-positive (by the previous lemma),

so the off-diagonal elements of -[C- GI are non-negative, i.e., -[C- GI

is a "quasi-monotone increasing" operator (101. If ('(t) were to exit the

first orthant, it would have to do so by passing through the boundary,

i.e., one of the axis planes. Thus there would exist an instant t and

a capacitor k such that V' (t) 0 although v. (t) > 0 Vj # k. But
k-

from (A-2), this implies:

.4.%



vk(t )t* 0 ~ (A-3).

So in fact k Wt does not become negative at tt .In other words, the

*vector field (A-2) never points out of the first orthant when evaluated

on its boundary. (For a "down" step, <"(0 lies in the negative "first

orthant" and can never leave it.)

For a more complete explanation, and consideration of limiting

cases, see references [11], [12], and [13].
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Appendix B: Term-by-Term Ordering of the Time Constants

we have the following formulas for the time constants,
% ," ..

TR. i C

T - _x 1ikCkxkD i k"- "D..

2 k
= Rck (B-l). ..:

It is already known that the inequality TR. < TD. < T holds for any

leaky RC mesh (just evaluate the state constraints (46) at time t=O).

However, it is not immediately obvious that this inequality also holds

term-by-term for each corresponding term in the summation (i.e.,

1 2 1R Ck <-RCR k - . RikCkk - %kCk for each node k). The goal here is toR. ikk

establish this result. After simplification, the inequality we wish to

prove reduces to:

RRik < Xk kk (B-2).
R.. - x. - R

2. 2 ik

Proof of (B-2):

Starting from zero initial equilibrium, apply an "up" step of 1

volt at time t=0 to the input of any leaky RC mesh. Note that v - 0 and

v = x. Evaluating (26) at time t-0, we obtain:
-eq -

b ° ':

*4* - - * . . . . . . . . . . . . . . . . . . . . .
,o .. . . . .

- . . . . . . . . . . . . . . .



x R

11 k - x. - R.i

Evaluating (27) at time t=0, we obtain:

R iCXk-0] X01 - k < Rk (B-4)k k-< k x -Ri
iRki

The fact that R is symmetric (so that t i) tc ether with (B-3) and

(B-4) proves (B-2).

4

".

.I-
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Appendix C: M-Matrix Systems

The purpose of this appendix is to outline (from a more abstract

"systems" point-of-view) the underlying reason why the waveform bounding

results presented in El] and [2] carry over to the leaky RC meshes in

this report. Leaky RC meshes are similar to non-leaky RC meshes [2] and

non-leaky RC trees (l] in one fundamental respect: They are all linear

dynamical systems with an "M-matrix" as the system matrix (14]. In the

literature, there are many different equivalent statements about M-matrices

that would all serve equally well as definitions. The statement best

suited to our purposes is as follows.

Definition: Let M be a non-singular square matrix of real

numbers, and let P = M-
. Then M is said to

0be an "M-matrie if all off-diagonal elements

of M are non-positive and all elements of P

*are non-negative.

In terms of the RC networks in this report, the M-matrix is

-- 1

M= CG (C-I),

and the non-negative inverse M-matrix is

P a RC (C-2),

as we can easily verify.

The conductance matrix G has non-positive off-diagonal elements
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(by the lemma in Appendix A). Premultiplying by the positive diagonal .2'.>
matrix C 1 does not change this, i.e., [C-G] has non-positive off-diagonal

elements.

The resistance matrix R is clearly non-negative, assuming that

the individual resistors are non-negative. Postmultiplying by the

positive diagonal matrix C does not change this, i.e., [RC] is non-negative.

Hence [C G] is indeed an M-matrix, as is G itself. (In general,

the set of M-matrices is invariant under the group action consisting of

right and left multiplication by positive diagonal matrices.)

The network differential equations (12) can now be viewed more

abstractly as a linear dynamical system with a (negative) M-matrix as

the system matrix:

()= -M v(t) + M v (C-3).
- ..eq

We can successfully bound the step response of the abstract system,

(C-3), because both Fact 1 (appropriately modified) and Fact 2 from

Section VI apply to the abstract system.

Fact 1-C: Let P be a non-singular NxN square matrix which

is the inverse of an M-matrix. Then P has the

following structure:

PiiPkj >_PkiPij for any i,j,k E{1,..., N} (C-4).

. , ,

. . . . -.. . . . . . . . . . . . .,-.S.S
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Proof of Fact 1-C:

If i=j or i=k, (C-4) is satisfied trivially. If j=k, (C-4) becomes
Sii~kk > Pki~ik (note that Pk iPik in general; the inverse M-

matrix P is not necessarily symmetric), which is true because any

principal minor of an inverse M-matrix is known to be positive (16; Cor. 1,

p. 198] and hence the 2x2 principal submatrix of P consisting of the

elements in rows i or k that also lie in columns i or k must have a

positive determinant.

Suppose i, j, and k are distinct, and consider the matrix P which

is the 3x3 principal submatrix of P consisting of the elements in rows i,

j, or k that also lie in columns i, j, or k. Since any principal sub-

matrix of an inverse M-matrix is known to be an inverse M-matrix [15, p. 3291,

P is an inverse M-matrix and hence (-l 0. Taking the inverse of Pkj k

using cofactors, we have 0 > ( = [(cof p /(det P)], and det P > 0

(16]. Thus cof pJ =k <k~i -0, proving (C-4).

Note: Although not proven here, Fact 1-C also holds for a slightly

more general class of matrices than inverse M-matrices. Going back to

the more concrete domain of RC networks, if any individual resistor or

capacitor is equal to zero then Fact I-C still holds for P RC even

though P is not invertible in this case. However, P is contained in the

closure of the set of inverse M-matrices. The practical advantage of

this is that the bounding technique is still valid for circuits with minor

specification errors (e.g., leaving out a capacitor).
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Fact 2-C: If v(t) in the abstract system (C-3) is initially , .-

non-decreasing (non-increasing) it will remain

non-decreasing (non-increasing) for all time:

i.e. ,

(0)> 0 (t) > 0 Vt > 0

(0) < 0 ('(t) < 0 Vt > 0 (C-5).

Proof of Fact 2-C:

The differential equation for the evolution of C(t), v(t) = -M (t),

is quasi-monotone increasing (since the off-diagonal elements of -M are

non-negative). Hence the proof is entirely analogous to the proof in

Appendix A. U

. ...

, -

S . .'
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